Birational Motives, II: Triangulated Birational Motives
نویسندگان
چکیده
منابع مشابه
Birational motives, I: pure birational motives
In the preprint [19], we toyed with birational ideas in three areas of algebraic geometry: plain varieties, pure motives in the sense of Grothendieck, and triangulated motives in the sense of Voevodsky. These three themes are finally treated separately in revised versions. The first one was the object of [21]; the second one is the object of the present paper; we hope to complete the third one ...
متن کامل2 7 Fe b 20 09 BIRATIONAL MOTIVES , I : PURE BIRATIONAL MOTIVES
In the preprint [19], we toyed with birational ideas in three areas of algebraic geometry: plain varieties, pure motives in the sense of Grothendieck, and triangulated motives in the sense of Voevodsky. These three themes are finally treated separately in revised versions. The first one was the object of [21]; the second one is the object of the present paper; we hope to complete the third one ...
متن کاملEquivalent Birational Embeddings Ii: Divisors
Two divisors in Pn are said to be Cremona equivalent if there is a Cremona modification sending one to the other. We produce infinitely many non equivalent divisorial embeddings of any variety of dimension at most 14. Then we study the special case of plane curves and rational hypersurfaces. For the latter we characterise surfaces Cremona equivalent to a plane, under a mild assumption. Introduc...
متن کاملBirational Cobordisms and Factorization of Birational Maps
In this paper we develop a Morse-like theory in order to decompose birational maps and morphisms of smooth projective varieties defined over a field of characteristic zero into more elementary steps which are locallyétale isomorphic to equivariant flips, blow-ups and blow-downs of toric varieties (see Theorems 1, 2 and 3). The crucial role in the considerations is played by K *-actions where K ...
متن کاملIterative properties of birational rowmotion II
Birational rowmotion – a birational map associated to any finite poset P – has been introduced by Einstein and Propp as a far-reaching generalization of the (wellstudied) classical rowmotion map on the set of order ideals of P . Continuing our exploration of this birational rowmotion, we prove that it has order p+q on the (p, q)rectangle poset (i.e., on the product of a p-element chain with a q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2016
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnw184